Respuesta :
Answer:
- 45 trucks
- 60 dolls
Step-by-step explanation:
Let t and d represent the numbers of trucks and dolls produced. The given relations let us write two equations:
t + d = 105
4t +5d = 480
Substituting for t, we have ...
4(105 -d) +5d = 480
d +420 = 480 . . . . . . . . . simplify
d = 60 . . . . . . . . . . . . subtract 480
t = 105 -d = 45
45 trucks and 60 dolls were produced in that hour.
S O L U T I O N:
Let's assume the no. of toy trucks be 't' and the no. of dolls produced 'd'
From the above condition as been expressed in question we can frame two equations i.e,
[tex]:\implies\tt{t + d = 105 \: ...(1)} [/tex]
[tex]:\implies\tt{t = 105 - d}[/tex]
[tex]:\implies\tt{4t + 5d = 480 \: ...(2)}[/tex]
Placing the value of t in equation (2),
[tex]:\implies\tt{4(105 - d) + 5d = 480}[/tex]
[tex]:\implies\tt{420 - 4d + 5d = 480}[/tex]
[tex]:\implies\tt{1d = 480 - 420}[/tex]
[tex]:\implies\tt{d = 60}[/tex]
Placing value of d in eqn (1),
[tex]:\implies\tt{t + d = 105}[/tex]
[tex]:\implies\tt{t + 60 = 105}[/tex]
[tex]:\implies\tt{t = 105 - 60}[/tex]
[tex]:\implies\tt{t = 45}[/tex]
- Dolls produced were 60 and toy trucks produced were 45.