Respuesta :

Let  y=x  

x

+x  

a

+a  

x

+a  

a

 

Also let,  x  

x

=u,x  

a

=v,a  

x

=w, and a  

a

=s

∴y=u+v+w+s

⇒  

dx

dy

=  

dx

du

+  

dx

dv

+  

dx

dw

+  

dx

ds

 .....(1)

u=x  

x

 

⇒logu=logx  

x

 

⇒logu=xlogx

Differentiating both sides with respect to x, we obtain

u

1

 

dx

du

=logx.  

dx

d

(x)+x.  

dx

d

(logx)  

⇒  

dx

du

=u[logx.1+x  

x

1

]  

⇒  

dx

du

=x  

x

[logx+1]=x  

x

(1+logx)  .....(2)

v=x  

a

 

∴  

dx

dv

=  

dx

d

(x  

a

)  

⇒  

dx

dv

=ax  

a−1

 .....(3)

w=a  

x

 

⇒logw=loga  

x

 

⇒logw=xloga

Differentiating both sides with respect to x, we obtain  

w

1

.  

dx

dw

=loga.  

dx

d

(x)

⇒  

dx

dw

=wloga

⇒  

dx

dw

=a  

x

loga .....(4)  

s=a  

a

 

Since a is constant, a  

a

 is also a constant.  

∴  

dx

ds

=0 .....(5)  

From (1), (2), (3), (4) and (5) we obtain  

dx

dy

=x  

x

(1+logx)+ax  

a−1

+a  

x

loga+0  

=x  

x

(1+logx)+ax  

a−1

+a  

x

loga