Respuesta :

Given the permutation expression,  [tex]^8P_5[/tex], the value of the expression is: 6,720.

Recall:

  • In Permutation, order matters and the following general rule is given: [tex]^nP_r = \frac{n!}{(n - r)!}[/tex]

Given the expression: [tex]^8P_5[/tex], the following shows how to evaluate the expression by applying the general case formula for Permutation.

Thus:

Where,

8 = 5

r = 5

  • Plug in the values

[tex]^8P_5 = \frac{8!}{(8 - 5)!}\\\\^8P_5 = \frac{8!}{3!}\\\\^8P_5 = \frac{8 \times 7 \times 6 \times 5 \times 4 \times 3!}{3!} \\\\^8P_5 = 8 \times 7 \times 6 \times 5 \times 4\\\\\mathbf{^8P_5 = 6,720}[/tex]

Therefore, given the permutation expression,  [tex]^8P_5[/tex], the value of the expression is: 6,720.

Learn more about permutation on:

https://brainly.com/question/12468032