Respuesta :
Answer:
[tex]\boxed{\sf a=\cfrac{\sqrt{15i} }{3}}[/tex]
[tex]\boxed{\sf a=-\cfrac{\sqrt{15i} }{3}}[/tex]
Step-by-step explanation:
[tex]\sf 6a^2 + 10 = 0[/tex]
We'll solve this equation using The Quadratic Formula:
[tex]\boxed{\sf \frac{-b\pm \sqrt{b^2-4ac} }{2a} }[/tex]
[tex]\sf 6a^2 + 10 = 0[/tex]
Substitute 6: a, 0: b, 10: c
[tex]\longmapsto\sf a=\cfrac{0\pm\sqrt{0^2-4\times 6\times 10} }{2\times 6}[/tex]
→ Square 0
→ Multiply -4 * 6= -24
→ Multiply -24 * 10 = -240
[tex]\longmapsto\sf a=\cfrac{0\pm\sqrt{-240} }{2\times 6}[/tex]
→ Take the square root of -240:
→ Multiply 2 * 6= 12
Now, Separate solutions:
[tex]\longmapsto\sf a=\cfrac{0\pm 4\sqrt{15i} }{12}[/tex]
Now, Separate solutions:
First, solve the equation when ± is plus:
[tex]\longmapsto \boxed{\sf a=\cfrac{\sqrt{15i} }{3}}[/tex]
___
Now, solve it when ± is minus:
[tex]\longmapsto \boxed{\sf a=-\cfrac{\sqrt{15i} }{3}}[/tex]
__________________________________________
[tex]\sf\longmapsto 6a^2+10=0[/tex]
- a=6
- b=0
- c=10
[tex]\sf\longmapsto a=\dfrac{-b\pm\sqrt{b^2-4ac}}{2a}[/tex](This a is root of equation)
[tex]\sf\longmapsto a=\dfrac{-0\pm\sqrt{0^2-4(6)(10)}}{2(6)}[/tex]
[tex]\sf\longmapsto a=\dfrac{\pm\sqrt{-240}}{12}[/tex]
[tex]\sf\longmapsto a=\dfrac{\pm\sqrt{240}i}{12}[/tex]
[tex]\sf\longmapsto a=\dfrac{\pm 4√15i}{12}[/tex]
[tex]\sf\longmapsto a=\dfrac{\pm √15i}{3}[/tex]
[tex]\sf\longmapsto a=\dfrac{\pm √3√5i}{3}[/tex]
[tex]\sf\longmapsto a=\pm\dfrac{√5i}{\sqrt{3}}[/tex]
[tex]\sf\longmapsto a=\pm\sqrt{\dfrac{5}{3}}i [/tex]
What is i?
i stands for iota.
[tex]\sf\longmapsto i=\sqrt{-1}[/tex]