Respuesta :

[tex]T =\dfrac 5{V+1}\\\\\\\implies VT+T = 5\\\\\implies VT = 5-T\\\\\implies V =\dfrac{5-T}T[/tex]

Answer:   [tex]V = \frac{5}{T} - 1[/tex]   OR  [tex]V = \frac{5 - T}{T}[/tex]

Step-by-step explanation:

One way we can make V the subject of the formulas by rearranging the terms mathematically to get V on one side of the equation and the other terms on the other side:

since       T = 5 ÷ (V + 1)          [multiply both sides by (V+1)]

    T (V + 1) = 5                        [divide both sides by T]

       (V + 1) = 5 ÷ T                  [subtract 1 from both sides]

              V = (5 ÷ T) - 1    OR   [tex]V = \frac{5}{T} - 1[/tex]

If we want the RHS with over a single denominator we can write it as

  V = (5 ÷ T) - (T ÷ T)       [rewrite 1 in terms of T (T/T)]

  V = (5 - T) ÷ T   OR  [tex]V = \frac{5 - T}{T}[/tex]