Answer:
[tex]-3x^{2} -5x+2[/tex]
Step-by-step explanation:
I'm assuming the original problem is to simplify the expression [tex]-2x(x+3)-(x+1)(x-2)[/tex].
Step 1: Multiply (x+3) by -2x
[tex]-2x(x+3)=(-2x*x)+(-2x*3) = -2x^{2} -6x[/tex]
The expression becomes [tex]-2x^{2} -6x-(x+1)(x-2)[/tex]
Step 2: Simplify (x+1)(x-2)
The easiest way to simplify this is to use the "FOIL" method.
(x+1)(x-2)
F = x*x
O = x*(-2)
I = 1*x
L = 1*(-2)
F+O+I+L=[tex]x^{2} -2x+x-2=x^{2} -x-2[/tex]
The expression becomes [tex]-2x^{2} -6x-(x^{2} -x-2)[/tex]
Step 3: Multiply [tex]x^{2} -x-2[/tex] by -1:
[tex](-1)(x^{2} -x-2)=-x^{2} +x+2[/tex]
The expression becomes [tex]-2x^{2} -6x-x^{2} +x+2[/tex]
Step 4: Combine like terms
[tex]-2x^{2} -x^{2} =-3x^{2}[/tex]
[tex]-6x+x=-5x[/tex]
The expression becomes [tex]-3x^{2} -5x+2[/tex]