Respuesta :

Answer:

[tex]-3x^{2} -5x+2[/tex]

Step-by-step explanation:

I'm assuming the original problem is to simplify the expression [tex]-2x(x+3)-(x+1)(x-2)[/tex].

Step 1: Multiply (x+3) by -2x

[tex]-2x(x+3)=(-2x*x)+(-2x*3) = -2x^{2} -6x[/tex]

The expression becomes [tex]-2x^{2} -6x-(x+1)(x-2)[/tex]

Step 2: Simplify (x+1)(x-2)

The easiest way to simplify this is to use the "FOIL" method.

(x+1)(x-2)

F = x*x

O = x*(-2)

I = 1*x

L = 1*(-2)

F+O+I+L=[tex]x^{2} -2x+x-2=x^{2} -x-2[/tex]

The expression becomes [tex]-2x^{2} -6x-(x^{2} -x-2)[/tex]

Step 3: Multiply [tex]x^{2} -x-2[/tex] by -1:

[tex](-1)(x^{2} -x-2)=-x^{2} +x+2[/tex]

The expression becomes [tex]-2x^{2} -6x-x^{2} +x+2[/tex]

Step 4: Combine like terms

[tex]-2x^{2} -x^{2} =-3x^{2}[/tex]

[tex]-6x+x=-5x[/tex]

The expression becomes [tex]-3x^{2} -5x+2[/tex]