Answer:
[tex]y = \frac{1}{5} x + 2[/tex]
Step-by-step explanation:
Slope-intercept form
y= mx +c, where m is the slope and c is the y-intercept.
[tex]\boxed{slope = \frac{y1 - y2}{x1 - x2} }[/tex]
Slope
[tex] = \frac{4 - ( - 1)}{10 - ( - 15)} [/tex]
[tex] = \frac{4 + 1}{10 + 15} [/tex]
[tex] = \frac{5}{25} [/tex]
[tex] = \frac{1}{5} [/tex]
Substitute m= ⅕ into the equation:
y= ⅕x +c
To find the value of c, substitute a pair of coordinates.
When x= 10, y= 4,
4= ⅕(10) +c
4= 2 +c
c= 4 -2
c= 2
Thus, the equation of the line is y= ⅕x +2.