Respuesta :

Answer:

Option 1:  [tex]\frac{2x}{3y^{2}z}[/tex]

Step-by-step explanation:

Using the Quotient Rule of Exponents:

[tex]\frac{a^{m}}{a^{n}} = a^{(m - n)}[/tex]

We could simplify the given exponential expression by reducing the constants and subtracting the exponents of the same base.

[tex]\frac{18x^{2}y}{27xy^{3}z}[/tex]

[tex]\frac{9*2*x^{2}y}{9*3*xy^{3}z}[/tex] =  [tex]\frac{2x^{2}y}{3xy^{3}z}[/tex]

Subtract the exponents of x, which eliminates x from the denominator.

[tex]\frac{2xy}{3y^{3}z}[/tex]

Lastly, subtract the exponents of y.  This process eliminates y from the numerator and leaving in the denominator.

[tex]\frac{2x}{3y^{2}z}[/tex] ⇒ This is the simplified form of the given exponential expression. Therefore, the correct answer is Option 1.