Respuesta :
A)4, 823
B)13 Weeks
A: 500 (1 + .12)^x (which is 500 (1 + .12)^20 now)
= 4823. 15 which is ≈ 4823.
B: 2000/ y1 = 500 (1 + .12)^x / y2
12.23 so 13 weeks
B)13 Weeks
A: 500 (1 + .12)^x (which is 500 (1 + .12)^20 now)
= 4823. 15 which is ≈ 4823.
B: 2000/ y1 = 500 (1 + .12)^x / y2
12.23 so 13 weeks
Answer:
a) (i) 1553 ants
(ii) 4823 ants
b) 12 weeks
Step-by-step explanation:
Given,
The initial number of ants, P = 500,
Also, the rate of increasing per week, r = 12% = 0.12,
So, the number of ants after x weeks,
[tex]A=P(1+r)^x[/tex]
[tex]\implies A=500(1+0.12)^x=500(1.12)^x[/tex]
a) (i) If x = 10 weeks,
The number of ants would be,
[tex]A=500(1.12)^{10}=1552.92\approx 1553[/tex]
(ii) If x = 20 weeks,
The number of ants would be,
[tex]A=500(1.12)^{20}=4823.15\approx 4823[/tex]
b) If A = 2000
[tex]\implies 2000 = 500(1.12)^x[/tex]
[tex]4=(1.12)^x[/tex]
Taking log both sides,
log(4) = xlog(1.12)
⇒ x = 12.23 ≈ 12 weeks