9514 1404 393
Answer:
Step-by-step explanation:
The average speed with the wind is (540 mi)/(2 h) = 270 mi/h.
The average speed against the wind is (540 mi)/(3 h) = 180 mi/h.
Let a and w represent the speeds of the airplane and wind, respectively.
a + w = 270 . . . . speed with the wind
a - w = 180 . . . . speed against the wind
2a = 450 . . . . . . sum of the two equations
a = 225 . . . . . . divide by 2
w = a -180 = 45
The speed of the airplane is 225 miles per hour; the speed of the wind is 45 miles per hour.