Respuesta :

[tex] \\ \sf \longmapsto \: \sqrt{3}(2 \sqrt{2} - 2 \sqrt{3} ) \\ \\ \sf \longmapsto \: 2 \sqrt{6} - 2 \sqrt{9} \\ \\ \sf \longmapsto \: 2 \sqrt{6} - 2(3) \\ \\ \sf \longmapsto \: 2 \sqrt{6} - 6 \\ \\ \sf \longmapsto \: 2( \sqrt{6 } - 3)[/tex]

Answer:

[tex] \bf 2 ( \sqrt{6} - 3) [/tex]

Step-by-step explanation:

[tex] \sf \sqrt{3} (2 \sqrt{2} - 2 \sqrt{3} )[/tex]

[tex] \sf = \sqrt{3} \times 2 \sqrt{2} - 3 \times 2 \sqrt{3} [/tex]

[tex] \sf = 2 \sqrt{6} - \sqrt{3} \times 2 \sqrt{3} [/tex]

[tex] \sf = 2 \sqrt{6} - 6[/tex]

[tex] \sf = 2 ( \sqrt{6} - 3) [/tex]

Conclusion:

Simple form of [tex] \sf \sqrt{3} (2 \sqrt{2} - 2 \sqrt{3} )[/tex] is [tex] \bf 2 ( \sqrt{6} - 3)[/tex].