Respuesta :
ans=[822;3232]
Step-by-step explanation:
I think the ans will be =[822;3232]
I hope it will help u.
Answer:
[tex]\textsf{\large{\underline{Solution 4}:}}[/tex]
Here:
[tex]\rm:\longmapsto A =\begin{bmatrix} 1&4\\ 5&6\end{bmatrix}[/tex]
[tex]\rm:\longmapsto B=\begin{bmatrix} 8&0\\ 2&4\end{bmatrix}[/tex]
Therefore, the matrix BA will be:
[tex]\rm=\begin{bmatrix} 8&0\\ 2&4\end{bmatrix}\begin{bmatrix} 1&4 \\ 5&6\end{bmatrix}[/tex]
[tex]\rm=\begin{bmatrix} 8 + 0&32 + 0\\ 2 + 20&8 + 24\end{bmatrix}[/tex]
[tex]\rm=\begin{bmatrix} 8 &32\\ 22&32\end{bmatrix}[/tex]
Therefore:
[tex]\rm: \longmapsto BA = \begin{bmatrix} 8 &32\\ 22&32\end{bmatrix}[/tex]
[tex]\textsf{\large{\underline{Learn More}:}}[/tex]
Matrix: A matrix is a rectangular arrangement of numbers in the form of horizontal and vertical lines.
Horizontal lines are called rows and vertical lines are called columns.
Order of Matrix: A matrix containing x rows and y column has order x × y and it has xy elements.
Different types of matrices:
Row Matrix: This type of matrices have only 1 row. Example:
[tex]\rm:\longmapsto A=\begin{bmatrix}\rm 1&\rm 2&\rm 3\end{bmatrix}[/tex]
Column Matrix: This type of matrices have only 1 column. Example:
[tex]\rm:\longmapsto A=\begin{bmatrix}\rm1\\ \rm2\\ \rm3\end{bmatrix}[/tex]
Square Matrix: In this type of matrix, number of rows and columns are equal. Example:
[tex]\rm:\longmapsto A=\begin{bmatrix}\rm 1&\rm 2\\ \rm 3&\rm 4\end{bmatrix}[/tex]
Zero Matrix: It is a matrix with all elements present is zero. Example:
[tex]\rm:\longmapsto A=\begin{bmatrix}\rm 0&\rm 0\\ \rm 0&\rm 0\end{bmatrix}[/tex]
Identity Matrix: In this type of matrix, diagonal element is 1 and remaining elements are zero. An Identity matrix is always a square matrix. Example:
[tex]\rm:\longmapsto A=\begin{bmatrix}\rm 1&\rm 0\\ \rm 0&\rm 1\end{bmatrix}[/tex]