Respuesta :

Answer:

[tex](5,1)[/tex]

Step-by-step explanation:

Hi there!

Midpoint = [tex]\displaystyle (\frac{x_1+x_2}{2},\frac{y_1+y_2}{2} )[/tex] where the two endpoints are [tex](x_1,y_1)[/tex] and [tex](x_2,y_2)[/tex]

Plug in the given information:

Midpoint = (5,3), Endpoint = (5,5)

[tex](5,3)=\displaystyle (\frac{5+x_2}{2},\frac{5+y_2}{2} )[/tex] where  [tex](x_2,y_2)[/tex] is the other endpoint

Solve for [tex]x_2[/tex]:

[tex]\displaystyle \frac{5+x_2}{2} =5\\\\5+x_2 =10\\x_2 =5[/tex]

Solve for [tex]y_2[/tex]:

[tex]\displaystyle\frac{5+y_2}{2}=3 \\\\{5+y_2}=6\\y_2=1[/tex]

Therefore, the other endpoint [tex](x_2,y_2)[/tex] is [tex](5,1)[/tex].

I hope this helps!

Answer:

S(5,1)

Step-by-step explanation:

Midpoint -M(5,3)

[tex]( \frac{x1 + x2}{2} \frac{y1 + y2}{2} ) \\ m(5 \: 3) \\ 5 = \frac{x1 + x2}{2} \\ 5 = \frac{5 + x2}{2 } \\ 5 \times 2 = 5 + x2 \\ 10 = 5 + x2 \\ 10 - 5 = x2 \\ x2 = 5 \\ 3 = \frac{y1 + y2}{2} \\ 3 = \frac{5 + y2}{2} \\ 3 \times 2 = 5 + y2 \\ 6 = 5 + y2 \\ 6 - 5 = y2 \\ y2 = 1 \\ meaning \: that \: the \: coordinates \: of \: the \: second \: end \: point \: are \: (5 \: 1)[/tex]

hope this helps.