Respuesta :
[tex]\\ \sf\longmapsto sin\Theta=\dfrac{Perpendicular}{Hypotenuse}[/tex]
[tex]\\ \sf\longmapsto sin\Theta=\dfrac{9}{10}[/tex]
[tex]\\ \sf\longmapsto sin\Theta=0.9[/tex]
[tex]\\ \sf\longmapsto sin^{-1}\Theta=sin^{-1}(0.9)[/tex]
[tex]\\ \sf\longmapsto \Theta=64.15°[/tex]
Answer:
• from trigonometric ratios:
[tex]{ \boxed{ \rm{ \sin( \theta) = \frac{opposite}{hypotenuse} }}} \\ [/tex]
• opposite → 9 cm
• hypotenuse → 10 cm
[tex]{ \rm{ \sin( \theta) = \frac{9}{10} }} \\ \\ { \rm{ \theta = { \sin }^{ - 1}( \frac{9}{10}) }} \\ \\ { \boxed{ \rm{ \theta = 64.2 \degree}}}[/tex]