Respuesta :
The triangles on Bhaskar's tent are similar (but not congruent) triangles.
- The length of IJ is 4.5 m
- The applicable theorem is the mid-point theorem
- The appropriate formula for area is the Heron's formula
- The ratio of ABC to DEF is 1 : 9
(a) The length of IJ
From the complete question (see attachment for diagram), we have:
[tex]\mathbf{EF = 9m}[/tex]
Points I and J are at the midpoint of DE and DF, respectively.
This means that:
[tex]\mathbf{IJ = \frac 12 \times EF}[/tex] --- midpoint theorem
Substitute [tex]\mathbf{EF = 9m}[/tex]
[tex]\mathbf{IJ = \frac 12 \times 9m}[/tex]
[tex]\mathbf{IJ = 4.5m}[/tex]
(b) The property of triangle to find GH and IJ
In (a), we used the midpoint theorem to calculate IJ
Because GH and IJ are corresponding sides of similar triangles, the midpoint theorem can also be used to calculate the length of GH
(c) The area of the triangle
For the given triangles, the lengths of the sides are known.
When the side lengths are known, the appropriate formula to calculate the area is the Heron's formula.
The Heron's formula is:
[tex]\mathbf{Area = \sqrt{s \times (s -a) \times (s - b) \times (s - c)}}[/tex]
Where:
[tex]\mathbf{s = a + b + c}[/tex]
[tex]\mathbf{a,b,c \to sides\ of\ the\ triangle}[/tex]
(d): The ratio of the areas:
For the small triangle, we have:
[tex]\mathbf{a = 3.8, b = 4, c = 3}[/tex]
So, the value of s is:
[tex]\mathbf{s = 3.8 + 4 + 3}[/tex]
[tex]\mathbf{s = 10.8}[/tex]
So, the area is:
[tex]\mathbf{Area = \sqrt{s \times (s -a) \times (s - b) \times (s - c)}}[/tex]
[tex]\mathbf{A_{small} = \sqrt{10.8 \times (10.8 - 3.8) \times (10.8 - 4) \times (10.8 - 3)}}[/tex]
[tex]\mathbf{A_{small} = \sqrt{4009.824}}[/tex]
For the big triangle, we have:
[tex]\mathbf{a = 11.4, b = 12, c = 9}[/tex]
So, the value of s is:
[tex]\mathbf{s = 11.4 + 12 + 9}[/tex]
[tex]\mathbf{s = 32.4}[/tex]
So, the area is:
[tex]\mathbf{Area = \sqrt{s \times (s -a) \times (s - b) \times (s - c)}}[/tex]
[tex]\mathbf{A_{big} = \sqrt{32.4 \times (32.4 - 11.4) \times (32.4 - 12) \times (32.4 - 9)}}[/tex]
[tex]\mathbf{A_{big} = \sqrt{324795.744}}[/tex]
So, the ratio of the small triangle to big triangle is:
[tex]\mathbf{Ratio = A_{small} : A_{big}}[/tex]
This gives:
[tex]\mathbf{Ratio = \sqrt{4009.824} : \sqrt{324795.744}}[/tex]
Express as fraction
[tex]\mathbf{Ratio = \frac{\sqrt{4009.824} }{ \sqrt{324795.744}}}[/tex]
[tex]\mathbf{Ratio = \sqrt{\frac{4009.824}{324795.744} }}[/tex]
[tex]\mathbf{Ratio = \sqrt{\frac{1}{81} }}[/tex]
[tex]\mathbf{Ratio = \frac{1}{9} }[/tex]
Express as ratio
[tex]\mathbf{Ratio = 1:9}[/tex]
Hence, the ratio of ABC to DEF is 1 : 9
Read more about similar triangles at:
https://brainly.com/question/14926756