Answer: B
Step-by-step explanation:[tex]y=f(x)=2x^3-6x^2-48x+24\\\\y'=6x^2-12x-48=6(x^2-2x-48)=6(x-4)(x+2)\\\\y''=12x-12\\\\if\ x=4\ then\ y'=0\ and\ y''=12*4-12 >0 \ \\==>\ a \ max , y=2*4^3-6*4^2-48*4+24=-136\\\\if\ x=-2\ then\ y'=0\ and\ y''=12*(-2)-12 \ <\ 0\\==> a\ min\ y=2*(-2)^3-6*(-2)^2-48*(-2)+24=80 \\\\\\Answer\ B[/tex]