Answer:
The length of [tex]BC[/tex] is [tex]3[/tex] units.
Step-by-step explanation:
The points [tex]A,B,C[/tex] are collinear and [tex]B[/tex] is in middle of [tex]A,C[/tex], so the expression that can justify the given statement is,
[tex]AB+BC=AC[/tex]
The given values are,
[tex]\begin{aligned}AB&=10\\AC&=13\end{aligned}[/tex]
Substituting values in the expression, it becomes,
[tex]\begin{aligned}AB+BC&=AC\\10+BC&=13\\BC&=13-10\\BC&=3\end{aligned}[/tex]