Respuesta :
[tex] \large \mathfrak{Solution : }[/tex]
Let's factorise :
- [tex]x( {x}^{2} - 9x + 18) = 0[/tex]
- [tex]x( {x}^{2} - 6x - 3x + 18) = 0[/tex]
- [tex]x( x(x - 6) - 3(x - 6)) = 0[/tex]
- [tex]x(x - 6)(x - 3) = 0[/tex]
now there are three cases :
1. when, x - 6 = 0
- x = 6
2. when x - 3 = 0
- x = 3
3. when x = 0
- x = 0
i hope it helped...
Answer:
x=0,3,6
Step-by-step explanation:
x³-9x²+18x=0
x(x²-9x+18)=0
x[x²-3x-6x+18]=0
x[x(x-3)-6(x-3)]=0
x(x-3)(x-6)=0
x=0,3,6