Respuesta :
The horizontal force applied to the lower block is approximately 1,420.85 Newtons
The known parameters are;
The mass of the block, m₁ = 400 kg, weight, W₁ = 3,924 N
The mass of the block resting on the first block, m₂ = 100 kg, weight, W₂ = 981 N
The length of the string attached to the block, W₂, l = 6 m
The horizontal distance from the point of attachment of the second block to the block W₂, x = 5 m
The coefficient of friction between the surfaces, μ = 0.25
Let T represent the tension in the string
The upward force on W₂ due to the string = T × sin(θ)
The normal force of W₁ on W₂, N₂ = W₂ - T × sin(θ)
The tension in the string, T = N₂ × μ × cos(θ)
∴ T = (W₂ - T × sin(θ)) × μ × cos(θ)
sin(θ) = √(6² - 5²)/6
cos(θ) = 5/6
∴ T = (981 - T × √(6² - 5²)/6) × 0.25 × 5/6
Solving, we get;
T ≈ 183.27 N
The normal reaction on W₂, N₂ = T/(μ × cos(θ))
∴ N₂ = 183.27/(0.25 × 5/6) = 879.7
N₂ ≈ 879.7 N
The friction force, [tex]F_{f2}[/tex] = N₂ × μ
∴ [tex]F_{f2}[/tex] = 879.7 N × 0.25 = 219.925 N
The total normal reaction on the ground, [tex]\mathbf{N_T}[/tex] = W₁ + N₂
[tex]N_T[/tex] = 3,924 N + 879.7 N = 4,803.7 N
The friction force, on the ground [tex]\mathbf{F_T}[/tex] = [tex]\mathbf{N_T}[/tex] × μ
∴ [tex]F_T[/tex] = 4,803.7 N × 0.25 = 1,200.925 N
The horizontal force applied to the lower block, P = [tex]\mathbf{F_T}[/tex] + [tex]\mathbf{F_{f2}}[/tex]
Therefore;
P = 1,200.925 N + 219.925 N = 1,420.85 N
The horizontal force applied to the lower block, P ≈ 1,420.85 N