Respuesta :

r3t40

First simplify the expression into polynomial form,

[tex](x-1)(x-3)(x+5)(x+7)=297[/tex]

[tex]x^4+8x^3-10x^2-104x+105=297[/tex]

[tex]x^4+8x^3-10x^2-104x-192=0[/tex]

Now factor into,

[tex](x-4)(x+8)(x^2+4x+6)=0[/tex]

Which means the solutions are,

[tex]x-4=0\implies\boxed{x_1=4}[/tex]

[tex]x+8=0\implies\boxed{x_2=-8}[/tex]

and then two complex solutions because determinant of the third factor [tex]D\lt0[/tex],

[tex]x^2+4x+6=0[/tex]

[tex]x^2+4x+4=-2[/tex]

[tex](x+2)^2=-2\implies\boxed{x_3=i\sqrt{2}-2},\boxed{x_4=-i\sqrt{2}-2}[/tex]

Hope this helps :)

Answer:

x=4

Step-by-step explanation:

(4-1)(4-3)(4+5)(4+7)=297