Respuesta :
The percentage by which the water density increased is 4.1[tex]\mathbf{\overline 6}[/tex] %
The known values are;
The increase in pressure per 10 meter increase in depth = 1.0 atm
The depth of the deepest ocean = 12 km = 12,000 m
The compressibility of the ocean = 5.0 × 10⁻⁵ 1/atm
The unknown
The percentage the density of water increased in the deepest ocean
Strategy;
Find the pressure at the deepest point of the deepest ocean and apply the compressibility
We have;
[tex]\mathbf{Compressibility = \dfrac{1}{V} \times \dfrac{\partial V}{\partial p}}[/tex]
The change in pressure, [tex]\partial p[/tex] = (12,000 m/(10 m)) × 1.0 atm = 1,200 atm
Therefore, we have for one cubic meter of water
[tex]\mathbf{5.0 \times 10^{-5} \ atm^{-1} = \dfrac{1}{1 \, m^3} \times \dfrac{\partial V}{1,200 \, atm}}[/tex]
Therefore;
[tex]\mathbf{\partial}[/tex]V = 5.0 × 10⁻⁵ atm⁻¹ × 1 m³ × 1,200 atm = 0.06 m³
The new volume = V - [tex]\mathbf{\partial}[/tex]V
∴ The new volume = 1 m³ - 0.06 m³ = 0.94 m³
The initial density = mass/(1 m³)
The new density = mass/(0.96 m³)
The percentage increase in density, [tex]\partial[/tex]ρ%, is given as follows;
[tex]\mathbf{\partial p \% = \dfrac{ \dfrac{Mass}{0.96 \ m^3} - \dfrac{Mass}{1 \ m^3} }{ \dfrac{Mass}{1 \ m^3}} \times 100 = \dfrac{25}{6} \% = 4.1 \overline 6 \%}[/tex]
∴ [tex]\mathbf{\partial}[/tex]ρ% = 4.1[tex]\mathbf {\overline 6}[/tex] %
The percentage by which the water density increased, [tex]\partial[/tex]ρ% = 4.1[tex]\mathbf{\overline 6}[/tex] %
Learn more about compressibility here;
https://brainly.com/question/18746977