Respuesta :

Answer:

A

Step-by-step explanation:

f(x) = 1/(x-3)+7

f(x)-7=1/(x-3)

x=1/(f(x)-7)+3

f^-1(x)=1/(x-7)+3, where x≠7

The correct answer is option (a)  [tex]f^{-1}(x)= \frac{1}{x-7} +3[/tex] where [tex]x\neq 7[/tex].

Domain

The domain of a function is the complete set of possible values of the independent variable

How to find domain?

Given [tex]f^{}(x)= \frac{1}{x-3} +7[/tex]

Let

[tex]y= \frac{1}{x-3} +7[/tex]

⇒y-7= 1/x-3

⇒x-3 =1/y- 7

⇒ [tex]x= \frac{1}{y-7} +3[/tex]

hence option a is correct

Learn more about domain here-brainly.com/question/24338767

#SPJ2