Respuesta :

Answer:

(5*sqrt(2), 5pi/4)

Step-by-step explanation:

In Polar coordinates, tan(theta)=y/x and r=sqrt(x^2+y^2)

tan(theta)=-5/5=-1. Theta=5pi/4

r=sqrt(5^2+5^2)=5*sqrt(2)

Hence the Polar coordinate is (5*sqrt(2), 5pi/4)

The polar coordinate is [tex](5\sqrt{2},\frac{-\pi }{4} )[/tex].

What is polar coordinate system?

The polar coordinate system is a two-dimensional coordinate system in which each point on a plane is determined by a distance from a reference point and an angle from a reference direction.

How to convert rectangular coordinates to polar coordinates?

To convert rectangular coordinate (x, y) to polar coordinate(r, θ) by using some formula

tanθ = y/x and [tex]r =\sqrt{x^{2} +y^{2} }[/tex]

According to the given question

We have

A rectangular coordinate (5, -5).

⇒ x = 5 and y = -5

Therefore,

[tex]r=\sqrt{(5)^{2} +(-5)^{2} } =\sqrt{25+25} =\sqrt{50} =5\sqrt{2}[/tex]

and

tanθ = [tex]\frac{-5}{5} =-1[/tex]

⇒ θ = [tex]tan^{-1} (-1)[/tex] = [tex]-\frac{\pi }{4}[/tex]

Therefore, the polar coordinate is [tex](5\sqrt{2},\frac{-\pi }{4} )[/tex].

Learn more about polar coordinates here:

https://brainly.com/question/1269731

#SPJ2