Respuesta :
If both triangles are similar then ratio of sides will be same.
[tex]\\ \sf\longmapsto \dfrac{12}{14}=\dfrac{y}{21}[/tex]
[tex]\\ \sf\longmapsto 12(21)=14y[/tex]
[tex]\\ \sf\longmapsto 14y=252[/tex]
[tex]\\ \sf\longmapsto y=\dfrac{252}{14}[/tex]
[tex]\\ \sf\longmapsto y=18[/tex]
Answer:
y = 18
Step-by-step explanation:
Since the triangles are similar, the corresponding sides are in proportion, that is
[tex]\frac{BC}{EF}[/tex] = [tex]\frac{AC}{DF}[/tex] , substitute values
[tex]\frac{y}{12}[/tex] = [tex]\frac{21}{14}[/tex] ( cross- multiply )
14y = 252 ( divide both sides by 14 )
y = 18