The mean of the exam score is 65.56
The given exam data is as follows;
Possible Score range ----------- frequency (f) -------- score (x) -----------(fx)
40 - 50 ------------------------- 21 ------------------- -----45 -------------- 945
50 - 60 --------------------------- 39------------------------55 ---------------2145
60 - 70 ----------------------------- 40---------------------- 65 ---------------- 2600
70 - 80 ------------------------------ 34 --------------------- 75 ----------------- 2550
80 - 90 ------------------------------ 28 --------------------- 85 ---------------- 2380
Note:[tex]score (x) = \frac{sum \ of \ the \ range }{2} , \ example \ \frac{40+49.99}{2} \approx 45[/tex]
The sum of the frequency (f) = 162
The sum of fx, ∑fx = 10620
The mean of the exam score:
[tex]\bar x = \frac{\Sigma fx }{\Sigma f} = \frac{10620}{162} = 65.56[/tex]
Therefore, the mean of the exam score is 65.56
To learn more about grouped mean calculation please visit: https://brainly.in/question/20735794