Respuesta :
- Surface Area=7238in^2
We know
[tex]\boxed{\sf Surface\:area=4\pi r^2}[/tex]
[tex]\\ \sf\longmapsto 4\pi r^2=7238[/tex]
[tex]\\ \sf\longmapsto 4\times \dfrac{22}{7}r^2=7238[/tex]
[tex]\\ \sf\longmapsto r^2=\dfrac{7238\times 7}{88}[/tex]
[tex]\\ \sf\longmapsto r^2=\dfrac{5066}{88}[/tex]
[tex]\\ \sf\longmapsto r^2=575.75[/tex]
[tex]\\ \sf\longmapsto r^2\approx576[/tex]
[tex]\\ \sf\longmapsto r\approx\sqrt{576}[/tex]
[tex]\\ \sf\longmapsto r\approx24in[/tex]
Option b is coreect
Answer:
B. 24 in.
Step-by-step explanation:
The given problem supplies as with the surface area of the beach ball and we are to look for the required radius. Assuming that the beach ball is perfectly shaped in the form of a sphere, then the formula for calculating the surface area of a sphere is given as:
SA = 4 π r^2
where r is the radius of the sphere and SA is the surface area which is given to be 7238 in^2
Rewriting the formula in terms of r:
r^2 = SA / 4 π
r = sqrt (SA / 4 π)
Solving for r:
r = sqrt (7238 in^2 / 4 π)
r = 24 in
Answer:
24 inches