Answer:
[tex]41.89\ cm^2[/tex]
Step-by-step explanation:
[tex]We\ are\ given:\\In\ two\ concentric\ circles,\\OD=3\ cm\\BC=4\ cm\\\angle DOB=\angle AOC=120\\Now,\\We\ know\ that:\\Area\ of\ a\ sector\ with\ a\ central\ angle\ \theta\ and\ a\ radius\ r\ is:\\A=\frac{\theta}{360}* \pi r^2\\Here,\\Area\ between\ the\ sectors=Area\ of\ Larger\ Sector - Area\ of\ smaller\ sector=\frac{\theta}{360}*\pi(R^2-r^2),\ where\ R\ and\ r\ are\ radii\ of\ the\ respective\ circles\ and\\ \theta\ is\ the\ common\ central\ angle.\\Here,\\R=4+3=7\ cm\\r=3\ cm\\ \theta=120\\ Hence,[/tex]
[tex]Area\ of\ the\ shaded\ region=\frac{120}{360}*\pi(7^2-3^2)=\frac{1}{3}*\pi(49-9)=\frac{1}{3}*\pi(40) \approx 41.89\ cm^2[/tex]