The vertex can be written as:
(-b/2a, b^2/(4*a) - b^2/2a + c)
For a general parabola:
y = a*x^2 + b*x + c
We can write the vertex as:
(h, k)
The x-value of the vertex is the value of the axis of symmetry.
Then we have:
h = x = -b/2a
Now we need to find the y-value of the vertex.
To do that, we just replace the variable "x" by the x-value of the vertex in our equation, so we get:
k = y = a*(-b/2a)^2 + b*(-b/2a) + c
k = b^2/(4*a) - b^2/2a + c
Then the coordinates of the vertex are:
(h, k) = (-b/2a, b^2/(4*a) - b^2/2a + c)
If you want to read more:
https://brainly.com/question/24302770