Answer:
Approximately [tex]50420[/tex] revolutions (rounded to the nearest whole number.)
Step-by-step explanation:
Convert the diameter of this wheel to meters: [tex]d = 30\; \rm cm = 0.30\; \rm m[/tex].
Circumference of this wheel:
[tex]\pi \, d = \pi \times 0.30\; \rm m \approx 0.942\; \rm m[/tex].
Distance travelled in one hour:
[tex]\begin{aligned}v \cdot t &= 13.2 \; \rm m \cdot s^{-1} \times 3600\; \rm s \\ &= 47520\; \rm m\end{aligned}[/tex].
Number of revolutions required for covering that distance:
[tex]\displaystyle \frac{47520\; \rm m}{(\pi \times 0.30\; \rm m)} \approx 50420[/tex].