Respuesta :
Answer:
f(x) = [x-(7-2i)][x-(7+2i)]
= [(x-7)+2i][(x-7)-2i]
= (x-7)2 - (2i)2
= x2 - 14x + 49 - 4i2 = x2 - 14x + 49 +4
= x2 - 14x + 53
Answer:
[tex](x-(7-i))[/tex]
Step-by-step explanation:
For a polynomial with roots [tex]a[/tex] and [tex]b[/tex], the polynomial [tex]f(x)[/tex] can be written in factored form [tex](x-a)(x-b)[/tex]. That way, when you plug in any of the roots, [tex]f(x)[/tex] returns zero.
Since the polynomial has at least two roots-9 and 7-i, two of its factors must then be:
[tex](x-(-9)\implies (x+9)\\(x-(7-i))\impli[/tex]
Therefore, the desired answer is [tex]\boxed{(x-(7-i))}[/tex]