Answer:
Vmax = 192.33 cm³
Step-by-step explanation: An error in the problem statement. The sides of the box could not be 12 cm. We assume 1.5 cm
Inside dimensions of the box:
Outer dimensions : 12 10 8
2 * 1.5 = 3 3 3 3
Inside dimensions: 9 7 5
The volume of a right circular cylinder is:
V(c) = π*r²*h r is the radius of the base and h the height
By simple inspection is obvious that volume maximum will occur when r is maximum, and r is maximum, only when the base of the cylinder is in the rectangle 12*10. ( Inside dim 9*7 ) In that case r = 7/2 r = 3.5 cm
Then the height is 5 cm.
And the maximum volume of the cylinder is:
Vmax = 3.14* ( 3.5)²*5
Vmax = 192.33 cm³