Answer:
The maximum value of the function = 11, at x = 3 and y = 5
The minimum value of the function = -21, at x = 3 and y = -3
Step-by-step explanation:
Given;
F = 4y - 3x
The function is subject to y ≤ 2x - 1,
y ≥ -2x + 3,
x ≤ 3
y ≤ 2x - 1
- ( y ≥ -2x + 3)
-------------------
0 ≤ 4x - 4
4 ≤ 4x
1 ≤ x
thus, 1 ≤ x ≤ 3
When x = 3
y ≤ 2x - 1 ⇒ y ≤ 2(3) - 1, ⇒ y ≤ 5
y ≥ -2x + 3, ⇒ y ≥ -2(3) + 3, ⇒ y ≥ - 3
thus, -3 ≤ y ≤ 5
When x = 1
y ≤ 2x - 1 ⇒ y ≤ 2(1) - 1, ⇒ y ≤ 1
y ≥ -2x + 3, ⇒ y ≥ -2(1) + 3, ⇒ y ≥ 1
when x = 1 and y = 1
F = 4(1) - 3(1)
F = 1
when y = -3, and x = 3
F = 4(-3) - 3(3)
F = -12 - 9
F = - 21
When y = 5 and x = 3
F = 4(5) - 3(3)
F = 20 - 9
F = 11
Therefore, the maximum value of the function = 11, at x = 3 and y = 5
The minimum value of the function = -21, at x = 3 and y = -3