Respuesta :
Complete question:
A transverse wave on a rope is given by [tex]y \ (x, \ t) = (0.75 \ cm) \ cos \ \pi[(0.400 \ cm^{-1}) x + (250 \ s^{-1})t][/tex]. The mass per unit length of the rope is 0.0500 kg/m. Find the tension. Express your answer in newtons.
Answer:
The tension on the rope is 1.95 N
Explanation:
The general equation of a progressive wave is given as;
[tex]y \ (x,t) = A \ cos(kx \ + \omega t)[/tex]
Compare the given equation with the general equation of wave, the following parameters will be deduced.
A = 0.75 cm
k = 0.400π cm⁻¹
ω = 250π s⁻¹
The frequency of the wave is calculated as;
ω = 2πf
2πf = 250π
2f = 250
f = 250/2
f = 125 Hz
The wavelength of the wave is calculated as;
[tex]\lambda = \frac{2\pi}{k} \\\\\lambda = \frac{2\pi }{0.4 \pi} = 5 \ cm = 0.05 \ m[/tex]
The velocity of the wave is calculated as;
v = fλ
v = 125 x 0.05
v = 6.25 m/s
The tension on the rope is calculated as;
[tex]v = \sqrt{\frac{T}{\mu}} \\\\where;\\\\T \ is \ the \ tension \ of \ the \ rope\\\\\mu \ is \ the \ mass \ per \ unit \ length = 0.05 \ kg/m\\\\v^2 = \frac{T}{\mu} \\\\T = v^2 \mu\\\\T = (6.25)^2\times (0.05)\\\\T = 1.95 \ N[/tex]
Therefore, the tension on the rope is 1.95 N