Answer:
The vector equation
[tex]r = (2 + 3t)i+ (2.4 + 2t)j+ (3.5 - t)k[/tex]
The parametric equation
[tex]x = 2 + 3t\\y = 2.4 + 2t\\z = 3.5-t[/tex]
Step-by-step explanation:
Given
[tex]Point = (2,2.4,3.5)[/tex]
[tex]Vector = 3i + 2j - k[/tex]
Required
The vector equation
First, we calculate the position vector of the point.
This is represented as:
[tex]r_0 = 2i + 2.4j + 3.5k[/tex]
The vector equation is then calculated as:
[tex]r = r_o + t * Vector[/tex]
[tex]r = 2i + 2.4j + 3.5k + t * (3i + 2j - k)[/tex]
Open bracket
[tex]r = 2i + 2.4j + 3.5k + 3ti + 2tj - tk[/tex]
Collect like terms
[tex]r = 2i + 3ti+ 2.4j + 2tj+ 3.5k - tk[/tex]
Factorize
[tex]r = (2 + 3t)i+ (2.4 + 2t)j+ (3.5 - t)k[/tex]
The parametric equation is represented as:
[tex]x = x_0 + at\\y = y_0 + bt\\z = z_0 + ct[/tex]
Where
[tex]r = (x_0 + at)i +(y_0 + bt)j+(z_0 + ct)k[/tex]
By comparison:
[tex]x = 2 + 3t\\y = 2.4 + 2t\\z = 3.5-t[/tex]