Respuesta :

Answer:

[tex](f + g)(4) = 191[/tex]

Step-by-step explanation:

Given

[tex]f(x) = 5x^2 - 5x + 15[/tex]

[tex]g(x) = 6x^2 + 7x - 8[/tex]

Required

[tex](f + g)(4)[/tex]

First, calculate [tex](f + g)(x)[/tex]

This is calculated as:

[tex](f + g)(x) = f(x) + g(x)[/tex]

So, we have:

[tex](f + g)(x) = 5x^2 - 5x + 15+6x^2 + 7x - 8[/tex]

Collect like terms

[tex](f + g)(x) = 5x^2 +6x^2 - 5x+ 7x + 15 - 8[/tex]

[tex](f + g)(x) = 11x^2 + 2x + 7[/tex]

Substitute 4 for x

[tex](f + g)(4) = 11*4^2 + 2*4 + 7[/tex]

[tex](f + g)(4) = 191[/tex]