Respuesta :

Step-by-step explanation:

[tex]\dfrac{dy}{dx} = \dfrac{2x}{y(x^2 + 1)}[/tex]

Rearranging the terms, we get

[tex]ydy = \dfrac{2xdx}{x^2 + 1}[/tex]

We then integrate the expression above to get

[tex]\displaystyle \int ydy = \int \dfrac{2xdx}{x^2 + 1}[/tex]

[tex]\displaystyle \frac{1}{2}y^2 = \ln |x^2 +1| + k[/tex]

or

[tex]y = \sqrt{2\ln |x^2 + 1|} + k[/tex]

where I is the constant of integration.