Consider the titration of 30 mL of 0.030 M NH3 with 0.025 M HCl. Calculate the pH after the following volumes of titrant have been added: a) 0 mL; b) 10 mL; c) 20 mL; d)35 mL; e) 36 mL; f) 37 mL.

Respuesta :

Answer:

a)10.87

b)9.66

c)9.15

d)7.71

e) 5.56

f) 3.43

Explanation:

tep 1: Data given

Volume of 0.030 M NH3 solution = 30 mL = 0.030 L

Molarity of the HCl solution = 0.025 M

Step 2: Adding 0 mL of HCl

The reaction:    NH3 + H2O ⇔ NH4+ + OH-

The initial concentration:  

[NH3] = 0.030M    [NH4+] = 0M    [OH-] = OM

The concentration at the equilibrium:

[NH3] = 0.030 - XM

[NH4+] = [OH-] = XM

Kb = ([NH4+][OH-])/[NH3]

1.8*10^-5 = x² / 0.030-x

1.8*10^-5 = x² / 0.030

x = 7.35 * 10^-4 = [OH-]

pOH = -log [7.35 * 10^-4]

pOH = 3.13

pH = 14-3.13 = 10.87

Step 3: After adding 10 mL of HCl

The reaction:

NH3 + HCl ⇔ NH4+ + Cl-

NH3 + H3O+ ⇔ NH4+ + H2O

Calculate numbers of moles:

Moles of NH3 = 0.030 M * 0.030 L = 0.0009 moles

Moles HCl = 0.025 M * 0.010 L = 0.00025 moles

Moles NH4+ = 0 moles

Number of moles at the equilibrium:

Moles NH3 = 0.0009 -0.00025 =0.00065 moles

Moles HCl = 0

Moles NH4+ = 0.00025 moles

Concentration at the equilibrium:

[NH3]= 0.00065 moles / 0.040 L = 0.01625M

[NH4+] = 0.00625 M

pOH = pKb + log [NH4+]/[NH3]

pOH =  4.75 + log (0.00625/0.01625)

pOH = 4.34

pH = 9.66

Step 3: Adding 20 mL of HCl

Calculate numbers of moles:

Moles of NH3 = 0.030 M * 0.030 L = 0.0009 moles

Moles HCl = 0.025 M * 0.020 L = 0.00050 moles

Moles NH4+ = 0 moles

Number of moles at the equilibrium:

Moles NH3 = 0.0009 -0.00050 =0.00040 moles

Moles HCl = 0

Moles NH4+ = 0.00050 moles

Concentration at the equilibrium:

[NH3]= 0.00040 moles / 0.050 L = 0.008M

[NH4+] = 0.01 M

pOH = pKb + log [NH4+]/[NH3]

pOH =  4.75 + log (0.01/0.008)

pOH = 4.85

pH = 14 - 4.85 = 9.15

Step 4: Adding 35 mL of HCl

Calculate numbers of moles:

Moles of NH3 = 0.030 M * 0.030 L = 0.0009 moles

Moles HCl = 0.025 M * 0.035 L = 0.000875 moles

Moles NH4+ = 0 moles

Number of moles at the equilibrium:

Moles NH3 = 0.0009 -0.000875 =0.000025 moles

Moles HCl = 0

Moles NH4+ = 0.000875 moles

Concentration at the equilibrium:

[NH3]= 0.000025 moles / 0.065 L = 3.85*10^-4M

[NH4+] = 0.000875 M / 0.065 L = 0.0135 M

pOH = pKb + log [NH4+]/[NH3]

pOH =  4.75 + log (0.0135/3.85*10^-4)

pOH = 6.29

pH = 14 - 6.29 = 7.71

Step 5: adding 36 mL HCl

Calculate numbers of moles:

Moles of NH3 = 0.030 M * 0.030 L = 0.0009 moles

Moles HCl = 0.025 M * 0.036 L = 0.0009 moles

Moles NH4+ = 0 moles

Number of moles at the equilibrium:

Moles NH3 = 0.0009 -0.0009 =0 moles

Moles HCl = 0

Moles NH4+ = 0.0009 moles

[NH4+] = 0.0009 moles / 0.066 L = 0.0136 M

Kw = Ka * Kb

Ka = 10^-14 / 1.8*10^-5

Ka = 5.6 * 10^-10

Ka = [NH3][H3O+] / [NH4+]

Ka =5.6 * 10^-10 =  x² / 0.0136

x = 2.76 * 10^-6 = [H3O+]

pH = -log(2.76 * 10^-6)

pH = 5.56

Step 6: Adding 37 mL of HCl

Calculate numbers of moles:

Moles of NH3 = 0.030 M * 0.030 L = 0.0009 moles

Moles HCl = 0.025 M * 0.037 L = 0.000925 moles

Moles NH4+ = 0 moles

Number of moles at the equilibrium:

Moles NH3 = 0.0009 -0.000925 =0 moles

Moles HCl = 0.000025 moles

Concentration of HCl = 0.000025 moles / 0.067 L = 3.73 * 10^-4 M

pH = -log 3.73*10^-4= 3.43

The pH of the solution in the titration of 30 mL of 0.030 M NH₃ with 0.025 M HCl, is:

a) pH = 10.86

b) pH = 9.66

c) pH = 9.15

d) pH = 7.70

e) pH = 5.56

f) pH = 3.43          

     

Calculating the pH

a) 0 mL        

Initially, the pH of the solution is given by the dissociation of NH₃ in water.  

NH₃ + H₂O ⇄ NH₄⁺ + OH⁻     (1)

The constant of the above reaction is:

[tex] Kb = \frac{[NH_{4}^{+}][OH^{-}]}{[NH_{3}]} = 1.76\cdot 10^{-5} [/tex]   (2)

At the equilibrium, we have:  

   NH₃    +    H₂O   ⇄   NH₄⁺    +    OH⁻     (3)  

0.030 M - x                      x               x

[tex] 1.76\cdot 10^{-5}*(0.030 - x) - x^{2} = 0 [/tex]

After solving for x and taking the positive value:

x = 7.18x10⁻⁴ = [OH⁻]  

Now, we can calculate the pH of the solution as follows:

[tex] pH = 14 - pOH = 14 + log(7.18\cdot 10^{-4}) = 10.86 [/tex]

Hence, the initial pH is 10.86.

   

b) 10 mL

After the addition of HCl, the following reaction takes place:

NH₃ + HCl ⇄ NH₄⁺ + Cl⁻  (4)  

We can calculate the pH of the solution from the equilibrium reaction (3).            

[tex] 1.76\cdot 10^{-5}(Cb - x) - (Ca + x)*x = 0 [/tex] (5)  

Finding the number of moles of NH₃ and NH₄⁺

The number of moles of NH₃ (nb) and NH₄⁺ (na) are given by:

[tex] n_{b} = n_{i} - n_{HCl} [/tex]     (6)

[tex] n_{b} = 0.030 mol/L*0.030 L - 0.025 mol/L*0.010 L = 6.5\cdot 10^{-4} moles [/tex]          

[tex] n_{a} = n_{HCl} [/tex]   (7)

[tex] n_{a} = 0.025 mol/L*0.010 L = 2.5 \cdot 10^{-4} moles [/tex]

Calculating the concentrations of NH₃ and NH₄⁺

The concentrations are given by:

[tex] Cb = \frac{6.5\cdot 10^{-4} moles}{(0.030 L + 0.010 L)} = 0.0163 M [/tex]   (8)

[tex] Ca = \frac{2.5 \cdot 10^{-4} mole}{(0.030 L + 0.010 L)} = 6.25 \cdot 10^{-3} M [/tex]      (9)

Calculating the pH

After entering the values of Ca and Cb into equation (5) and solving for x, we have:  

[tex] 1.76\cdot 10^{-5}(0.0163 - x) - (6.25 \cdot 10^{-3} + x)*x = 0 [/tex]

x = 4.54x10⁻⁵ = [OH⁻]

Then, the pH is:

[tex] pH = 14 + log(4.54\cdot 10^{-5}) = 9.66 [/tex]

Hence, the pH is 9.66.

c) 20 mL  

We can find the pH of the solution from the reaction of equilibrium (3).

 

Calculating the concentrations of NH₃ and NH₄⁺

The concentrations are (eq 8 and 9):

[tex] Cb = \frac{0.030 mol/L*0.030 L - 0.025 mol/L*0.020 L}{(0.030 L + 0.020 L)} = 8.0\cdot 10^{-3} M [/tex]    

[tex] Ca = \frac{0.025 mol/L*0.020 L}{(0.030 L + 0.020 L)} = 0.01 M [/tex]    

Calculating the pH  

After solving the equation (5) for x, we have:

[tex] 1.76\cdot 10^{-5}(8.0\cdot 10^{-3} - x) - (0.01 + x)*x = 0 [/tex]

x = 1.40x10⁻⁵ = [OH⁻]

Then, the pH is:  

[tex] pH = 14 + log(1.40\cdot 10^{-5}) = 9.15 [/tex]

So, the pH is 9.15.

d) 35 mL

We can find the pH of the solution from reaction (3).

 

Calculating the concentrations of NH₃ and NH₄⁺

[tex] Cb = \frac{0.030 mol/L*0.030 L - 0.025 mol/L*0.035 L}{(0.030 L + 0.035 L)} = 3.85\cdot 10^{-4} M [/tex]      

[tex] Ca = \frac{0.025 mol/L*0.035 L}{(0.030 L + 0.035 L)} = 0.0135 M [/tex]      

Calculating the pH  

After solving the equation (5) for x, we have:

[tex] 1.76\cdot 10^{-5}(3.85\cdot 10^{-4} - x) - (0.0135 + x)*x = 0 [/tex]

x = 5.013x10⁻⁷ = [OH⁻]      

Then, the pH is:  

[tex] pH = 14 + log(5.013\cdot 10^{-7}) = 7.70 [/tex]  

So, the pH is 7.70.

e) 36 mL  

Finding the number of moles of NH₃ and NH₄⁺

[tex] n_{b} = 0.030 mol/L*0.030 L - 0.025 mol/L*0.036 L = 0 [/tex]    

[tex] n_{a} = 0.025 mol/L*0.036 L = 9.0 \cdot 10^{-4} moles [/tex]

                                   

Since all the NH₃ reacts with the HCl added, the pH of the solution is given by the dissociation reaction of the NH₄⁺ produced in water.

At the equilibrium, we have:                

NH₄⁺    +    H₂O   ⇄   NH₃    +    H₃O⁺

Ca - x                             x               x

[tex] Ka = \frac{x^{2}}{Ca - x} [/tex]  

[tex] Ka(Ca - x) - x^{2} = 0 [/tex]   (10)          

 

Calculating the acid constant of NH₄⁺

We can find the acid constant as follows:

[tex] Kw = Ka*Kb [/tex]

Where Kw is the constant of water = 10⁻¹⁴

[tex] Ka = \frac{1\cdot 10^{-14}}{1.76 \cdot 10^{-5}} = 5.68 \cdot 10^{-10} [/tex]  

Calculating the pH  

The concentration of NH₄⁺ is:

[tex] Ca = \frac{9.0 \cdot 10^{-4} moles}{(0.030 L + 0.036 L)} = 0.0136 M [/tex]      

After solving the equation (10) for x, we have:

x = 2.78x10⁻⁶ = [H₃O⁺]

Then, the pH is:  

[tex] pH = -log(H_{3}O^{+}) = -log(2.78\cdot 10^{-6}) = 5.56 [/tex]

Hence, the pH is 5.56.

f) 37 mL

Now, the pH is given by the concentration of HCl that remain in solution after reacting with NH₃ (HCl is in excess).

Calculating the concentration of HCl  

[tex] C_{HCl} = \frac{0.025 mol/L*0.037 L - 0.030 mol/L*0.030 L}{(0.030 L + 0.037 L)} = 3.73 \cdot 10^{-4} M = [H_{3}O^{+}] [/tex]      

Calculating the pH  

[tex] pH = -log(H_{3}O^{+}) = -log(3.73 \cdot 10^{-4}) = 3.43 [/tex]

Therefore, the pH is 3.43.

   

Find more about pH here:

brainly.com/question/491373

 

I hope it helps you!