Answer:
The answer is below
Step-by-step explanation:
a) The patio is in the form of a rectangle. The patio has a width of (x - 10) ft. Therefore given that the area of the patio is x² + 10x - 200, hence:
[tex]Area=length*breadth\\\\x^2+10x-200=length*(x -10)\\\\x^2+20x-10x-200=length*(x -10)\\\\x(x+20)-10(x+20)=length*(x -10)\\\\(x-10)(x+20)=length*(x -10)\\\\length=x +20[/tex]
b) Area of original house = length of house * breadth of house
The length of house = length of patio = x + 20; breadth of house = x + 10; therefore:
Area of original house = (x + 20)(x + 10) = x² + 10x + 20x + 200
Area of original house = x² + 30x + 200
c) If the width is extended, hence:
[tex]Area=length*breadth\\\\x^2+12x-160=(x+20)*width\\\\x^2+20x-8x-160=(x+20)*width\\\\x(x+20)-8(x+20)=(x+20)*width\\\\(x-8)(x+20)=(x+20)*width\\\\width=x-8\\\\Extended \ width=(x-8)-(x-10)\\\\Extended \ width=2\ feet[/tex]