Answer:
Normal force exerted on the rover would be greater at a point on the surface of the planet where the weight of the rover is experienced to be greater.
Explanation:
Since weight is a vector quantity, it can vary with position. Weight is the amount of force the planet exerts on the rover centered towards the planet.
Such a force is the result of gravitational pull and is quantified as:
[tex]F=G\times \frac{M.m}{R^2}[/tex]
and [tex]M=\rho\times \frac{4\pi.r^3}{3}[/tex]
where:
R = distance between the center of mass of the two bodies (here planet & rover)
G = universal gravitational constant
M = mass of the planet
m = mass of the rover
This gravitational pull varies from place to place on the planet because the planet may not be perfectly spherical so the distance R varies from place to place and also the density of the planet may not be uniform hence there is variation in weight.
Weight is basically a force that a mass on the surface of the planet experiences.
According to Newton's third law the there is an equal and opposite reaction force on the body (here rover) which is the normal force.