Answer:
θ ≈ 50°, AB ≈ 15.6
Step-by-step explanation:
Using the tangent ratio in the right triangle
tanθ = [tex]\frac{opposite}{adjacent}[/tex] = [tex]\frac{BC}{AC}[/tex] = [tex]\frac{11.9}{10}[/tex] = 1.19 , then
θ = [tex]tan^{-1}[/tex] (1.19 ) ≈ 50° ( to the nearest degree
-----------------------------------------------------------------
Using the cosine ratio in the right triangle
cos50° = [tex]\frac{adjacent}{hypotenuse}[/tex] = [tex]\frac{AC}{AB}[/tex] = [tex]\frac{10}{AB}[/tex] ( multiply both sides by AB )
AB × cos50° = 10 ( divide both sides by cos50° )
AB = [tex]\frac{10}{cos50}[/tex] ≈ 15.6 ( to 1 dec. place )