An x-method chart shows the product a c at the top of x and b at the bottom of x. Below the chart is the expression a x squared + b x + c. What are the factors of x2 – 144? And

Respuesta :

Answer:

[tex](x -12)(x + 12)[/tex]

Step-by-step explanation:

Given

See attachment for chart

Required

The factors of [tex]x^2 - 144[/tex]

First, express [tex]x^2 - 144[/tex] as [tex]ax^2 + bx + c[/tex]

So, we have:

[tex]x^2 - 144 = x^2 + 0x - 144[/tex]

Compare the above expression to: [tex]ax^2 + bx + c[/tex]

We have:

[tex]ax^2 + bx + c = x^2 + 0x - 144[/tex]

So:

[tex]a =1[/tex]

[tex]b =0[/tex]

[tex]c = -144[/tex]

and

[tex]a * c = d * e[/tex]

Calculate ac

[tex]a* c = 1 * -144[/tex]

[tex]a* c = -144[/tex]

Rewrite as:

[tex]a* c = -12 * 12[/tex]

Recall that:

[tex]a * c = d * e[/tex]

Hence:

[tex]d = -12; e = 12[/tex]

So, on the x chart, we have:

        ac

d                  e

        b

This gives:

        -144

-12                  12

        0

The factors are

[tex](x + d)(x + e)[/tex]

[tex](x -12)(x + 12)[/tex]

Ver imagen MrRoyal

Answer:

✔ (x – 12)

 and  

✔ (x + 12)

Step-by-step explanation:

Ver imagen kristentylerr1