Answer:
None of the options is true
Step-by-step explanation:
Given
[tex]y < 3x - 1[/tex]
[tex]y > -x + 4[/tex]
Required
Which makes the above inequality true
The missing options are:
[tex](4,0)\ (1,2)\ (0,4)\ (2,1)[/tex]
[tex](a)\ (x,y) = (4,0)[/tex]
Substitute values for x and y in the inequalities
[tex]y < 3x - 1[/tex]
[tex]0<3*4 - 1[/tex]
[tex]0<12 - 1[/tex]
[tex]0<11[/tex] ---- This is true
[tex]y > -x + 4[/tex]
[tex]0 > -4 + 4[/tex]
[tex]0 > 0[/tex] --- This is false
[tex](b)\ (x,y) = (1,2)[/tex]
Substitute values for x and y in the inequalities
[tex]y < 3x - 1[/tex]
[tex]2<3 * 1 - 1[/tex]
[tex]2<3 - 1[/tex]
[tex]2<2[/tex] --- This is false (no need to check the second inequality)
[tex](c)\ (x,y) = (0,4)[/tex]
Substitute values for x and y in the inequalities
[tex]y < 3x - 1[/tex]
[tex]4< 3*0-1[/tex]
[tex]4< 0-1[/tex]
[tex]4<-1[/tex] --- This is false (no need to check the second inequality)
[tex](d)\ (x,y) = (2,1)[/tex]
Substitute values for x and y in the inequalities
[tex]y < 3x - 1[/tex]
[tex]1<3*2-1[/tex]
[tex]1<6-1[/tex]
[tex]1<5[/tex] --- This is true
[tex]y > -x + 4[/tex]
[tex]1 > -2+4[/tex]
[tex]1 > 2[/tex] -- This is false
Hence, none of the options is true