Answer:
h = 3, k = 64
Step-by-step explanation:
Given
[tex]log_{2}[/tex] y = - [tex]\frac{1}{2}[/tex] [tex]log_{2}[/tex] x + 3
In the form
y = mx + c ( m is the slope and c the y- intercept )
Then
h = 3
On the [tex]log_{2}[/tex] axis [tex]log_{2}[/tex] y = 0 then
0 = - [tex]\frac{1}{2}[/tex] [tex]log_{2}[/tex] k + 3 ( subtract 3 from both sides )
- 3 = - [tex]\frac{1}{2}[/tex] [tex]log_{2}[/tex] k ( divide both sides by - [tex]\frac{1}{2}[/tex] )
6 = [tex]log_{2}[/tex] k , then
k = [tex]2^{6}[/tex] = 64