Respuesta :

Answer:

h = 3, k = 64

Step-by-step explanation:

Given

[tex]log_{2}[/tex] y = - [tex]\frac{1}{2}[/tex] [tex]log_{2}[/tex] x + 3

In the form

y = mx + c ( m is the slope and c the y- intercept )

Then

h = 3

On the [tex]log_{2}[/tex] axis [tex]log_{2}[/tex] y = 0 then

0 = - [tex]\frac{1}{2}[/tex] [tex]log_{2}[/tex] k + 3 ( subtract 3 from both sides )

- 3 = - [tex]\frac{1}{2}[/tex] [tex]log_{2}[/tex] k ( divide both sides by - [tex]\frac{1}{2}[/tex] )

6 = [tex]log_{2}[/tex] k , then

k = [tex]2^{6}[/tex] = 64