[tex]\implies {\blue {\boxed {\boxed {\purple {\sf { \: (p - 6)(p + 14) }}}}}}[/tex]
[tex]\large\mathfrak{{\pmb{\underline{\orange{Step-by-step\:explanation}}{\orange{:}}}}}[/tex]
[tex] {p}^{2} + 8p - 84[/tex]
[tex] = {p}^{2} + 14p - 6p - 84[/tex]
Taking [tex]p[/tex] as common from first two terms and [tex]6[/tex] from last two terms, we have
[tex] = p(p + 14) - 6(p + 14)[/tex]
Taking the factor [tex](p+14)[/tex] as common,
[tex] = (p - 6)(p + 14)[/tex]
[tex]\large\mathfrak{{\pmb{\underline{\red{Mystique35 }}{\red{❦}}}}}[/tex]