Drag the tiles to the correct boxes to complete the pairs. Not all tiles will be used.
Match the systems of equations to their solutions.

Drag the tiles to the correct boxes to complete the pairs Not all tiles will be used Match the systems of equations to their solutions class=

Respuesta :

Answer:

Step-by-step explanation:

1). 2x + y = 12 -----(1)

   x = 9 - 2y -------(2)

   By substituting the value of x from equation (2) to equation (1)

   2(9 - 2y) + y = 12

   18 - 4y + y = 12

   18 - 3y = 12

   3y = 18 - 12

   y = 2

   By substituting the value of x in equation (2)

    x = 9 - 2(2)

    x = 9 - 4

    x = 5

2). x + 2y = 9 ------(1)

    2x + 4y = 20

    x + 2y = 10 -------(2)

    Since, both the equations are the parallel equations,

    Therefore, No solutions will be the answer.

3). x + 3y = 16 -------(1)

    2x - y = 11 ---------(2)

    Multiply equation (2) by 3 the add to equation (1)

    6x - 3y + (x + 3y) = 16 + 33

    7x = 49

     x = 7

     From equation (1),

     7 + 3y = 16

     3y = 9

     y = 3

4). y = 11 - 2x -------(1)

    4x - 3y = -13 -------(2)

    By substituting the value of y from equation (1) to (2),

    4x - 3(11 - 2x) = -13

     4x - 33 + 6x = -13

     10x = 33 - 13

     10x = 20

     x = 2

      From equation (1)

     y = 11 - 2(2)

    y = 7

5). y = 10 + x -------(1)

    -3x + 3y = 30

    -x + y = 10

     y = 10 + x ------(2)

    Equations (1) and (2) are same.

    Therefore, Infinite solutions will be the answer.

6). 2x + y = 11 --------(1)

    x - 2y = -7 ---------(2)

    Multiply equation (1) by 2 then add to equation (2)

    4x + 2y + (x - 2y) = 22 - 7

    5x = 15

    x = 3

    From equation (2)

    3 - 2y = -7

    2y = 3 + 7

     y = 5