Respuesta :
Answer:
[tex]a_n = 4.5 * 3^{n-1}[/tex]
Step-by-step explanation:
Given
[tex]a_4 = 121.5[/tex]
[tex]r = 3[/tex]
Required
[tex]a_n = a_1 * r^{n -1}[/tex]
Substitute 4 for n in [tex]a_n = a_1 * r^{n -1}[/tex]
[tex]a_4 = a_1 * r^{4 -1}[/tex]
[tex]a_4 = a_1 * r^3[/tex]
Substitute 121.5 for [tex]a_4[/tex]
[tex]121.5 = a_1 * 3^3[/tex]
[tex]121.5 = a_1 * 27[/tex]
Solve for a1
[tex]a_1 = \frac{121.5}{27}[/tex]
[tex]a_1 = 4.5[/tex]
So, we have:
[tex]a_n = a_1 * r^{n -1}[/tex]
[tex]a_n = 4.5 * 3^{n-1}[/tex]
Answer:
First I substituted 121.5 for an, 4 for n, and 3 for r in the general form. Then I solved to find a1 = 4.5. Finally, I substituted 4.5 for a1 and 3 for r in the general form to get an = 4.5 ⋅ 3n−1.
Step-by-step explanation:
sample answer on edge ;)