Respuesta :
Given:
In quadrilateral EFGH, [tex]FG\parallel EH,\angleE\cong \angle H,EF=4n-4,FG=3n+3, GH=2n+6[/tex]
To find:
The length of segment GH.
Solution:
Draw a figure according to the given information as shown below.
In quadrilateral EFGH, [tex]FG\parallel EH,\angleE\cong \angle H[/tex], it means the quadrilateral EFGH is an isosceles quadrilateral because base angles are equal.
Now, quadrilateral EFGH is an isosceles quadrilateral, so the sides EF and GH are equal.
[tex]EF=GH[/tex]
[tex]4n-4=2n+6[/tex]
[tex]4n-2n=4+6[/tex]
[tex]2n=10[/tex]
Divide both sides by 2.
[tex]n=\dfrac{10}{2}[/tex]
[tex]n=5[/tex]
Now,
[tex]GH=2n+6[/tex]
[tex]GH=2(5)+6[/tex]
[tex]GH=10+6[/tex]
[tex]GH=16[/tex]
Therefore, the correct option is C.