A 15.0-m uniform ladder weighing 500 N rests against a frictionless wall. The ladder makes a 60.08 angle with the horizontal. (a) Find the horizontal and vertical forces the ground exerts on the base of the ladder when an 800-N firefighter has climbed 4.00 m along the ladder from the bottom. (b) If the ladder is just on the verge of slipping when the firefighter is 9.00 m from the bottom, what is the coefficient of static friction between ladder and ground

Respuesta :

Answer:

a)  fr = 266.92 N,   fy = 1300 N,  b)    μ = 0.36

Explanation:

a) This is a balancing act.

Let's write the rotational equilibrium relations, where the turning point is the bottom of the ladder and the counterclockwise rotations are positive

             -w x - W x₂ + R y = 0         (1)

usemso trigonometry to find distances

            cos 60.08 = x / 7.5

            x = 7.5 cos 60.08

            x = 3.74 m

fireman

           cos 60.08 = x₂ / 4

           x2 = 4 cos 60

           x2 = 2 m

wall support

           sin 60.08 = y / 15

           y = 15 are 60.08

           y = 13 m

we substitute in equation 1

           R y = w x + W x2

            R = (w x + W x2) / y

            R = (500 3.74 +800 2) / 13

            R = 266.92 N

now let's write the expressions for the translational equilibrium

X axis

           R -fr = 0

           R = fr

           fr = 266.92 N

Y Axis  

           Fy - w-W = 0

           fy = 500 + 800

           fy = 1300 N

b) ask the friction coefficient

the firefighter's distance is

          cos 60.08 = x₃ / 9.00

          x₃ = 9 cos 60

          x₃ = 5.28 m

from equation 1

          R = (w x + W x₃) / y

          R = 500 3.74 + 800 5.28) / 13

          R = 468.769 N

we saw that

          fr = R = 468.769

The expression for the friction force is

          fr = μ N

in this case the normal is the ratio to pesos

        N = Fy

       N = 1300 N

        μ N = fr

        μ = fr / N

        μ = 468,769 / 1300

         μ = 0.36