Answer:
[tex]\frac{a_{c1}}{a_{c2}} = 2.23[/tex]
Explanation:
The centripetal acceleration is given as follows:
[tex]a_c = \frac{v^2}{r}\\[/tex]
where,
ac = centripetal acceleration
v = linear speed = rω
r = radius
ω = angular speed
Therefore,
[tex]a_c = \frac{(r\omega)^2}{r}\\\\a_c = r\omega^2[/tex]
Therefore, the ratio will be:
[tex]\frac{a_{c1}}{a_{c2}} = \frac{r_1\omega^2}{r_2\omega^2}\\\\\frac{a_{c1}}{a_{c2}} = \frac{r_1}{r_2}\\\\[/tex]
where,
r₁ = 6.7 m
r₂ = 3 m
Therefore,
[tex]\frac{a_{c1}}{a_{c2}} = \frac{6.7\ m}{3\ m}\\\\[/tex]
[tex]\frac{a_{c1}}{a_{c2}} = 2.23[/tex]