Respuesta :
The inverse matrix or type none of the given matrix is given as [tex]\rm A^{-1} = \dfrac{1}{-5}\begin{bmatrix}3& 4\\2 & 1 \\\end{bmatrix}\\[/tex].
What is the matrix?
A matrix is a specific arrangement of items, particularly numbers. A matrix is a row-and-column mathematical structure. The a_{ij} element in a matrix, such as M, refers to the i-th row and j-th column element.
The matrix is given below.
[tex]A = \begin{bmatrix}3& 2\\4 & 1 \\\end{bmatrix}[/tex]
Then the transpose of a will be
[tex]\rm adj \ A = \begin{bmatrix}a_{11} & a_{21} \\a_{12} & a_{22} \\\end{bmatrix}\\\\\rm adj \ A = \begin{bmatrix}3& 4\\2 & 1 \\\end{bmatrix}[/tex]
Then the value of matrix A will be
[tex]\rm \left| A \right|= \begin{vmatrix}3& 2\\4 & 1\end{vmatrix}\\\\\left| A \right|= 3*1 - 4*2\\\\|A| = -5[/tex]
Then the inverse matrix is defined as
A⁻¹ = Adj A / |A|
Then we have
[tex]\rm A^{-1} = \dfrac{\begin{bmatrix}3& 4\\2 & 1 \\\end{bmatrix}}{-5}\\\\\\A^{-1} = \dfrac{1}{-5}\begin{bmatrix}3& 4\\2 & 1 \\\end{bmatrix}\\[/tex]
More about the matrix link is given below.
https://brainly.com/question/9967572
#SPJ2